

Universal H Series Heaters®

Consumer Troubleshooting Guide

Safety Precautions

High Voltage Electrocution Hazard

Hazardous voltage can shock, burn, cause serious injury and or death. To reduce the risk of electrocution and or electric shock hazards:

- Only qualified technicians should remove the panel
- Replace damaged wiring immediately
- Insure panel is properly grounded and bonded

Table of Contents

UHS Sequence of Operation: Normal/Failure to Light		4-5
UHS Gas and Electrical Connections		6
How To:	Pg.	7-10
Program Heater Bypass & Temperature Lockout		8-10
Troubleshooting:	Pg.	11-12
Diagnostic Codes		12
Heat Exchanger: Flow requirements		13
Heat Exchanger: Inspection		14
Heat Exchanger: Potential Failure Causes		15

UHS Sequence of Operation: Normal

The control continually compares the set temp to the actual water temp. When the water temp is 1° below the set point the following sequence starts:

- 1. The control checks for open blower vacuum switch
- 2. Blower starts pre-purge cycle as the ignitor heats up (20 Sec).
- 3. The control checks for a closed blower vacuum switch.
- 4. At proper ignitor temp, a 4 second trial begins. Gas valve opens and monitors flame sense. The blower will turn off for one second. The ignitor is de-energized at flame sense or at completion of 4 sec trial. If the flame is sensed, The blower vacuum switch, control loop, temp sensor & flame sensor are constantly monitored during call for heat.
- 5. When set temp is reached, the control ends the call for heat. The gas valve is de-energized, and the flame is extinguished.
- 6. The blower will operate for a 30 second post purge.

NOTE: If during step four, the heater fails to fire, please proceed to the next page for more details outlining failure to light operations.

UHS Sequence of Operation: Failure to Light

If trial fails:

- 1. Gas valve de-energizes (for 30 second, blower post purge).
- 2. Starts over at #2 of heating mode sequence.
- 3. Retries 3 times until lockout (IF code).
- 4. Waits 60 minutes then retries 3 more times.
- 5. Will continue to retry every 60 minutes, until demand for heat is stopped.

NOTE: When making keypad entries of any type there may be a 5-10 sec delay for certain situations.

UHS Electrical & Gas Connection

Electrical & Gas connections as of September of 2008 (Newer Style)

Connections located on both the left & right side of heater cabinet

Universal H Series Heaters®

How To:

How To: Program Heater Bypass Operation

Follow the included steps to place the heater in bypass mode for external control.

How To: Program Temperature Lock-Out

Follow the included steps to place the heater in bypass mode for external control.

How To: Program Temperature Lock-Out (cont.)

This feature is available on heaters manufactured after February 25th 2011.

Universal H Series Heaters®

Troubleshooting:

Diagnostic Codes

Below is a list of all Diagnostic Codes for the UHS Heater.

Diagnostic Code	Description	
AC	Blower Vacuum Switch closed	
AO	Blower Vacuum Switch open	
BD	Bad board or secondary high voltage fault	
CE	Communication Error Between Control Module and Display Interface Assembly	
EE	Bad board	
HF	Flame present with Gas Valve not energized.	
HS	Maximum return water temperature exceeded and / or rapid water temperature rise.	
IF	Ignition Failure	
IO	Ignitor Circuit Open	
LO	Water Pressure Switch, Vent Pressure Switch, or Temperature Limit Switch Fault	
PF	Voltage polarity reversed, low voltage detected	
SB	Keypad failure	
SF	Temperature Sensor (thermistor) input failure	

Please contact a local authorized service center for service. go to: www.hayward.com and click on the "Dealer Locator"

Heat Exchanger: Flow Requirements

Flow requirements should be checked to insure proper operation. Never allow heater to operate below minimum flow requirements or damage may occur.

- Flow less than minimum could cause issues such as the heater dry firing or water to boil causing high limits to trip and possible damage to heat exchanger.
- Flow exceeding maximum flow could cause issues such as damage to the heat exchanger by thinning the tube walls.

Internal By-Pass

NOTE: Internal by-pass should be inspected periodically as it could be the cause of low or high water flow through the exchanger

Flow Requirements

Model	Min GPM	
H150FD H200FD	20	
H250FD H300FD	25	
H350FD H400FD	30	
H400FD	40	
Maximum water flow 125 GPM		

Heat Exchanger: Inspection

The following steps should be done by an authorized service center.

- 1. Remove black metal Trim Plate (around water manifold, 5 Black screws)
- 2. Remove water connection side Upper End Cap (Black Polymer- 4 screws in rectangle holes marked with an arrow)
- 3. Disconnect Unions from plumbing (water connections, 1 inlet, 1 outlet.)
- 4. Remove (8) ½" hex head bolts (4 on each side-inlet and outlet)
- 5. Remove water manifold (also called the "Header") and black polymer "Mounting Blocks" to expose the ends of the heat exchanger tubes.
- 6. If there is any doubt as to whether or not there is damage from aggressive water chemistry: take 3 pictures, 1 of each pair of tubes (inlet side and outlet side), as well as the Model & Serial number decal, and send to your local technical representative, or call (908) 355-7995 for further instructions.

Heat Exchanger tubes should look like this picture

Heat Exchanger: Potential Failure Causes

New, Clean Exchanger

Annealed Fins – Low Water Flow

High pH, Alkalinity or Calcium Hardness

Low pH or High Water Flow

Low pH

Sooted – Improper Fuel and Air Mixture.

High Sanitizer Levels

High Sanitizer Levels

Freeze Damage

